MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.

FÍSICA GRACELI DIMENSIONAL.




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  1 /  = [          ] ω       ψ      [ ]/ [    ]    .   .



   = [          ] ,     [ ψ     [ [ ]     .




 = [          ] ,     [ ψ      [][]    .



ψ [ ψ  []/    .



ψ  /  []    . ] 



ψ      [ ]    .



 ψ     [ ]    .


ψ      []    .






ψ  ]/     .


* [ ] .








 [].  .


ψ []  .










[]    .


ψ      ]  / ]    .






ψ     [

{\displaystyle {\boldsymbol {\mu }}_{S}=-g_{\text{s}}\mu _{\text{B}}{\frac {\mathbf {S} }{\hbar }},}

]/ / ]     .





ψ [ 

{\displaystyle {\boldsymbol {\mu }}_{S}=-g_{\text{s}}\mu _{\text{B}}{\frac {\mathbf {S} }{\hbar }},}

]  .








ψ [] / ψ     .



  [] / ψ   .




Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]

Assim, a função de onda total é escrita como uma função de produto.

 (P)


Momento magnético de spin do elétron

momento magnético de spin do elétron é{\displaystyle {\boldsymbol {\mu }}_{S}=-g_{\text{s}}\mu _{\text{B}}{\frac {\mathbf {S} }{\hbar }},}onde {\displaystyle \mathbf {S} }é o vetor de spin (ou momento angular intrínseco), {\displaystyle \mu _{\text{B}}}é o magneton de Bohr , e {\displaystyle g_{\text{s}}=2.0023...\approx 2}é o fator g do spin do elétron . Aqui {\displaystyle {\boldsymbol {\mu }}}é uma constante negativa multiplicada pelo spin , então o momento magnético do spin é antiparalelo ao spin.

O potencial spin-órbita consiste em duas partes. A parte de Larmor está conectada à interação do momento magnético de spin do elétron com o campo magnético do núcleo no referencial co-móvel do elétron. A segunda contribuição está relacionada à precessão de Thomas .







magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1






Comentários

Mensagens populares deste blogue